Глубокие изменения в науке XVI-XVII века, закрепившие за этим периодом название “научной революции”, коснулись не только науки о природе, но и математических дисциплин. Создателям дифференциального и интегрального исчисления, аналитической геометрии, теории вероятностей предстояло преодолеть серьезные препятствия.
Сложность заключалась не только в чисто технических, узконаучных моментах,- уже античность умеет по-своему интегрировать и проводить касательные, - но и в общефилософском плане. На пути создания математического анализа и аналитической геометрии стояли классические представления древности и средневековья о природе числа, континуума, о нормах строгости, доказательности в математике, - короче, о всем том, чем должна быть математика в рамках некоторой мировоззренческой перспективы. Пионерам новоевропейской математики - Валлису, Ферма, Декарту, Паскалю и др.- пришлось преодолевать не только узкоматематические трудности, но и вести спор с тысячелетними философскими традициями. Следует также отметить, что сложнейшие гносеологические проблемы, сопутствующие рождению новоевропейской математики, имеют не только исторический интерес. Ключевые проблемы математики XX века - интуиционизм, логицизм, конструктивные направления, нестандартный анализ и др.- теснейшим образом связаны с научными спорами XVI-XVII веков.В плане чистой истории математики изобретение Декарта не было “потрясением основ”. Весь XVI век математика Западной Европы переживает бурный процесс алгебраизации. Истоки же этого движения нужно искать еще раньше, в позднем средневековье. С XII века, когда в Европе начинают переводить на латынь сочинения Евклида, Птолемея, Аль-Хорезми, вместе с переводами с арабского в западноевропейскую культуру транслируется и особый образ математики, сыгравший формирующую, заправляющую роль. Из математики исламской культуры приходит подчеркнутое пристрастие к алгоритмическим методам, к знанию, сформулированному в виде правил и рецептов.
Декарт, демонстрируя в своей книге мощь нового метода аналитической геометрии, существенно преакцинтирует само понимание геометрии - и в смысле метода, и в смысле предмета. Причины этой трансформации - и простирающиеся вплоть до нашего времени следствия ее - связаны с глубокими изменениями философского и общекультурного горизонта, внутри которого только и существует математика любой эпохи, с новыми ценностными ориентирами, характерными для науки XVII века.
Чтобы лучше понять смысл декартовского переворота в математике, нам нужно вспомнить, как осознается в античности познавательный статус геометрии. Пифагорейски-платоновская традиция понимает геометрию как науку двойственную, обязанную своим существованием двум принципам: интеллекту и воображению.
Греческая геометрия, развивавшаяся в русле платоновско-пифагорейской традиции, делала особый акцент на созерцательном характере геометрических методов, подчеркивала важность целостного постижения геометрических образов, небезразлично относилась и к эстетическому аспекту геометрии.
Сущность декартовской новации являлась ее алгебраизация. Новым, что принесла с собой картезианская “геометрия”, было принципиальное, систематическое сведение геометрических задач к алгебраическим. Речь щла не о новых удачных приемах решения задач, а об изменении самой точки зрения на геометрию. Понять эту трансформацию можно лишь обратившись к декартовскому философскому учению о методе. Действительно, существует удивительная непрерывность в переходе от чисто философских построений “Рассуждений о методе” к геометрическим конструкциям в “Геометрии”.
“Под методом же, - пишет Декарт, - я разумею точные и простые правила, строгое соблюдение которых всегда препятствует принятию ложного за истинное и, без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что ему доступно”. Сформулируем специально эти характерные черты декартовского метода: достоверность, простота, механичность, продуктивность, полнота. Метод, однажды найденный, уже не требует для своей эксплуатации особых интеллектуальных усилий. Пользование им в науке приводит последнюю к своеобразной “механической работе”, безразличность которой, как неукоснительное невозмутимое следование предписанным правилам, служит даже гарантом правильности получаемых результатов и, следовательно, их истинности. В “Правилах” метод Декарта распадается на множество предписаний различной степени общности. В “Рассуждениях о методе” эти предписания сведены к четырем основным. Но для нас сейчас важнее другое. Поскольку правила метода выводятся из рассмотрения “структуры” самого человеческого разумения вообще, безотносительно к какой-либо конкретной науке, то они имеют трансцендентальный характер. Другими словами, эти правила характеризуют познание с его априорной стороны, с точки зрения его формы и играют роль в любых науках. Так, уже арифметика и геометрия древних, пишет Декарт, “являются не чем иным, как самопроизвольными плодами, возникшими из врожденных начал этого метода .”. Именно это, отчасти уже утраченное “искусство человеческой мудрости”, пытались воскресить, по мнению Декарта, и его современники под именем алгебры. “ .Таким образом,- пишет Декарт,- должна существовать некая общая наука, объясняющая все относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным (т.е. арабским “алджебер”.), но старым, уже вошедшим в употребление именем всеобщей математики .”.
Смотрите также
Русская философия первой половины XX столетия
Богдан Александрович Кистяковский
(1868-1920) родился в семье профессора уголовного права Киевского университета. Получил юридическое образование в Германии. Преподавал в Московском и Киевском универ ...