Дедуктивные умозаключения
Материалы / Дедуктивные умозаключения
Страница 7

1. Прогрессивный полисиллогизм с пропущенными большими посылками эписиллогизмов. Например:

jpg">

К сложносокращенным силлогизмам относится также эпихейрема. Эпихейремой называется сложносокращенный силлогизм, обе посылки которого являются энтимемами.

Например:

Развернем посылки эпихейремы в полные силлогизмы. Для этого восстановим в полный силлогизм сначала 1-ю энтимему:

Как видим, первую посылку эпихейремы составляют заключение и меньшая посылка силлогизма. Теперь восстановим 2-ю энтимему.

Вторую посылку эпихейремы также составляют заключение и меньшая посылка силлогизма.

Заключение эпихейремы получено из заключений 1-го и 2-го силлогизмов:

Развертывание эпихейремы в полисиллогизм позволяет проверить правильность рассуждения, избегать логических ошибок, которые могут остаться незамеченными в эпихейреме.

Понятие о логике высказываний

Современная символическая логика для анализа дедуктивных рассуждений строит особые логические системы; одна из них называется логикой высказываний или пропозициональной логикой, другая — логикой предикатов. Рассмотрим кратко принципы построения логики высказываний.

Логика высказываний — это логическая система, которая анализирует процессы рассуждения, основанные на характере связей между простыми суждениями, но без учета их внутренней структуры.

Язык логики высказываний включает: алфавит, определение правильно построенных выражений, интерпретацию.

Алфавит логики высказываний состоит из следующих символов.

Символы для высказываний: р, q, r, . (пропозициональные переменные).

Символы для логических связок:

(3) Технические знаки (,) — скобки.

Допустимые в логике высказываний выражения, называемые правильно построенными формулами или сокращенно ППФ, вводятся следующим определением:

1. Всякая пропозициональная переменная — р, q, r, . является ППФ.

2. Если А и В — ППФ (А и В — символы метаязыка, выражающие любые формулы), то выражения — АВ, AВ, А→В, АВ, ˉ|А также являются ППФ.

Все другие выражения, помимо предусмотренных п. 1 и 2, не являются ППФ языка логики высказываний.

Логика высказываний может строиться табличным методом или как исчисление, т. е. как система, позволяющая получать из одних формул другие.

Табличное построение предполагает семантические определения пропозициональных связок в виде матриц, показывающих зависимость истинного значения сложных формул от значений их составляющих простых формул. Если А и В простые формулы, то истинное значение построенных с помощью логических связок сложных формул может быть представлено матричным способом — в виде таблицы.

Среди правильно построенных формул в зависимости от их истинностного значения различают тождественно истинные, тождественно ложные и выполнимые формулы.

Тождественно истинными называют формулы, принимающие значения истины при любых — истинных или ложных — значениях составляющих их пропозициональных переменных. Такие формулы представляют собой законы логики.

Тождественно ложными называют формулы, принимающие значение лжи при любых — истинных или ложных — значениях пропозициональных переменных.

Выполнимыми называют формулы, которые могут принимать значения истины или лжи в зависимости от наборов значений составляющих их пропозициональных переменных.

Страницы: 2 3 4 5 6 7 8 9 10 11 12

    Смотрите также

    Русская философия первой половины XX столетия
    Богдан Александрович Кистяковский (1868-1920) родился в семье профессора уголовного права Киевского университета. Получил юридическое образование в Германии. Преподавал в Московском и Киевском универ ...