Соотношение содержания и формы мысли
Материалы / Соотношение содержания и формы мысли
Страница 3

а

в

И

И

Л

Л

4.

Каковы непосредственные умозаключения из сложных суждений?

Сложными называют суждения, состоящие из нескольких простых, связанных логическими связками. В соответствии с функциями логических связок различают следующие виды сложных суждений: соединительные, разделительные, условные, эквивалентные. Истинность таких сложных суждений определяется истинностью составляющих их простых.

Непосредственными умозаключениями называются дедуктивные умозаключения, делаемые из одной посылки. К ним в традиционной логике относят следующие: превращение, обращение, противопоставление предикату и умозаключения по «логическому квадрату».

Превращение – вид непосредственного умозаключения, при котором изменяется качество посылки без изменения ее количества, при этом предикат заключения является отрицанием предиката посылки.

Например: S+S1 есть Р Превращение: S+S1 не есть не-Р

(Саша и Маша вежливые дети – Саша и Маша не являются невежливыми детьми)

Обращением называется такое непосредственное умозаключение, в котором в заключении субъектом является предикат, а предикатом – субъект исходного суждения.

S+S1 есть Р Обращение: Р есть S+S1

Дельфины и киты – млекопитающие. Некоторые млекопитающие являются китами или дельфинами.

Противопоставление предикату – такое непосредственное умозаключение, при котором предикатом является субъект, субъектом – понятие, противоречащее предикату исходного суждения, и свзка меняется на противоположную.

S+S1 есть Р Противопоставление предикату: не-Р не есть S+S1

Все львы и тигры – хищные животные. Ни одно нехищное животное не является ни львом, ни тигром.

К непосредственным умозаключениям относят и умозаключения по «логическому квадрату» AEIO.

А – Все девочки и мальчики являются школьниками

E – Ни одна девочка и ни один мальчик не являются школьниками

I – Некоторые мальчики и девочки являются школьниками

O – Некоторые мальчики и девочки не являются школьниками

Из истинности общего суждения следует истинность частного подчиненного ему суждения (т. е. из истинности А следует истинность I (если Все девочки и мальчики являются школьниками, то Некоторые мальчики и девочки являются школьниками), из истинности Е следует истинность О (если Ни одна девочка и ни один мальчик не являются школьниками, то Некоторые мальчики и девочки не являются школьникам)). относительно противоречащих суждений А – О и Е – I можно умозаключать так: если одно из них истинно, то другое обязательно ложно (если истинно, что Все девочки и мальчики являются школьниками, то ложно, что Некоторые мальчики и девочки не являются школьниками). Они подчиняются закону исключения третьего.

Высказывания А и Е находятся в отношении контрарности. Они могут одновременно быть ложными, но не могут быть одновременно истинными. Поэтому из истинности одного из них можно сделать вывод о ложности другого.

Следовательно, если суждение А – истинно, то суждение Е – ложно.

Пары высказываний А, О и Е, I находятся в отношениях контрадикторности. Они не могут быть одновременно истинными или одновременно ложными. Поэтому когда одно из них является истинным, другое – ложно, и наоборот.

Следовательно, если А – истинно, то О – ложно. Так как мы выяснили, что при А истинном Е – ложно, то I – истинно.

Страницы: 1 2 3 4

    Смотрите также

    Русская философия первой половины XX столетия
    Богдан Александрович Кистяковский (1868-1920) родился в семье профессора уголовного права Киевского университета. Получил юридическое образование в Германии. Преподавал в Московском и Киевском универ ...